In statistics, particle filters, also known as Sequential Monte Carlo methods (SMC), are sophisticated model estimation techniques based on simulation.[1] Particle filters have important applications in econometrics,[2] and in other fields.
Particle filters are usually used to estimate Bayesian models in which the latent variables are connected in a Markov chain — similar to a hidden Markov model (HMM), but typically where the state space of the latent variables is continuous rather than discrete, and not sufficiently restricted to make exact inference tractable (as, for example, in a linear dynamical system, where the state space of the latent variables is restricted to Gaussian distributions and hence exact inference can be done efficiently using a Kalman filter). In the context of HMMs and related models, "filtering" refers to determining the distribution of a latent variable at a specific time, given all observations up to that time; particle filters are so named because they allow for approximate "filtering" (in the sense just given) using a set of "particles" (differently-weighted samples of the distribution).
Particle filters are the sequential ("on-line") analogue of Markov chain Monte Carlo (MCMC) batch methods and are often similar to importance sampling methods. Well-designed particle filters can often be much faster than MCMC. They are often an alternative to the Extended Kalman filter (EKF) or Unscented Kalman filter (UKF) with the advantage that, with sufficient samples, they approach the Bayesian optimal estimate, so they can be made more accurate than either the EKF or UKF. However, when the simulated sample is not sufficiently large, they might suffer from sample impoverishment. The approaches can also be combined by using a version of the Kalman filter as a proposal distribution for the particle filter.
Contents |
The particle filter aims to estimate the sequence of hidden parameters, xk for k = 0,1,2,3,…, based only on the observed data yk for k = 0,1,2,3,…. All Bayesian estimates of xk follow from the posterior distribution p(xk | y0,y1,…,yk). In contrast, the MCMC or importance sampling approach would model the full posterior p(x0,x1,…,xk | y0,y1,…,yk).
Particle methods assume and the observations can be modeled in this form:
and with an initial distribution .
One example form of this scenario is
where both and are mutually independent and identically distributed sequences with known probability density functions and and are known functions. These two equations can be viewed as state space equations and look similar to the state space equations for the Kalman filter. If the functions and are linear, and if both and are Gaussian, the Kalman filter finds the exact Bayesian filtering distribution. If not, Kalman filter based methods are a first-order approximation (EKF) or a second-order approximation (UKF in general, but if probability distribution is Gaussian a third-order approximation is possible). Particle filters are also an approximation, but with enough particles they can be much more accurate.
Particle methods, like all sampling-based approaches (e.g., MCMC), generate a set of samples that approximate the filtering distribution . So, with samples, expectations with respect to the filtering distribution are approximated by
and , in the usual way for Monte Carlo, can give all the moments etc. of the distribution up to some degree of approximation.
Sequential importance resampling (SIR), the original particle filtering algorithm (Gordon et al. 1993), is a very commonly used particle filtering algorithm, which approximates the filtering distribution by a weighted set of P particles
The importance weights are approximations to the relative posterior probabilities (or densities) of the particles such that .
SIR is a sequential (i.e., recursive) version of importance sampling. As in importance sampling, the expectation of a function can be approximated as a weighted average
For a finite set of particles, the algorithm performance is dependent on the choice of the proposal distribution
The optimal proposal distribution is given as the target distribution
However, the transition prior is often used as importance function, since it is easier to draw particles (or samples) and perform subsequent importance weight calculations:
Sequential Importance Resampling (SIR) filters with transition prior as importance function are commonly known as bootstrap filter and condensation algorithm.
Resampling is used to avoid the problem of degeneracy of the algorithm, that is, avoiding the situation that all but one of the importance weights are close to zero. The performance of the algorithm can be also affected by proper choice of resampling method. The stratified sampling proposed by Kitagawa (1996) is optimal in terms of variance.
A single step of sequential importance resampling is as follows:
The term Sampling Importance Resampling is also sometimes used when referring to SIR filters.
The "direct version" algorithm is rather simple (compared to other particle filtering algorithms) and it uses composition and rejection. To generate a single sample at from :
The goal is to generate P "particles" at using only the particles from . This requires that a Markov equation can be written (and computed) to generate a based only upon . This algorithm uses composition of the P particles from to generate a particle at and repeats (steps 2-6) until P particles are generated at .
This can be more easily visualized if is viewed as a two-dimensional array. One dimension is and the other dimensions is the particle number. For example, would be the Lth particle at and can also be written (as done above in the algorithm). Step 3 generates a potential based on a randomly chosen particle () at time and rejects or accepts it in step 6. In other words, the values are generated using the previously generated .